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Abstract-The study relates to vapour absorption into a failing film, where the concentration levels of 
absorbate and absorbent are comparable. The combined heat and mass transfer processes involved are 
analysed through an integral formulation of the continuity, diffusion and energy equations. Adiabatic and 
isothermal wall conditions are considered. The Nusselt and Sherwood numbers are expressed in terms of 
the non-djmensional parameters which characterize the system. It is shown that in the case of finite 
absorbate diiution, the lateral convective term at the free interface ought to be accounted for. The resulting 
transfer rates are shown to depend on both the absorbate concentration level and driving force and are 
significantly augmented compared to those obtained under the assumption of infinite absorbate dilution, 

1. INTRODUCTION 

FILM TYPE heat and mass exchangers demonstrate 
high transfer coefficients at relatively low process driv- 
ing force and are utilized extensively in a variety of 
industrial equipment, such as wetted wall columns, 
packed columns, rectifiers, evaporators, condensers 
and heat exchangers. 

Of particular interest here is the process of hygro- 
scopic condensation of relatively low temperature 
(low pressure) pure vapours on a hot film of an hygro- 
scopic (salt) solution, which occurs due to the reduced 
vapour pressure of the sufficiently concentrated salt 
solution [l-4]. The driving force for condensation is 
the difference between the partial pressure of water 
in the brine solution and the partial pressure of the 
condensing (water) vapour. The condensation in this 
case is governed also by mass transfer mechanisms, 
due to a non-isothermal absorption, with a possible 
opposing thermal driving force in the condensing vap- 
our phase. An important feature of the process is 
the comparable concentration levels of the absorbate 
(usually water) and the solute (salt), the former being 
usually the larger. 

In utilizing a hygroscopic brine film as the con- 
densing surface, the overall performance is governed 
by both the thermal resistance and the associated 
coupled resistance to mass transfer in the brine film, 
which is continuously varying due to the condensation 
at the free interface. 

The process of hygroscopic condensation of water 
vapour on concentrated brine film has been described 
as a promising route for energy recovery from (nat- 
urally available) brines, which represents a storage 
of energy [4]. Clearly, the commercial applicability 
of the process to energy recovery schemes is highly 
dependent on the overall transfer rates that can be 
achieved. 

Inspection of the relevant literature indicates that 

the focus has been mainly on the problem of absorp- 
tion of sparingly soluble gases (infinite absorbate 
dilution) into a liquid film in isothermal conditions. 
These have been recently reviewed [S-8]. Relatively 
few studies accounted for the temperature variation. 
Yih and Seagrave [9] studied the effect of an a priori 
assumed temperature d~st~bution across a lami- 
nar falling film on the physical properties, hence on 
the absorption process. Nakoryakov and Grigor’eva 
solved for the temperature profile [lo, 1 I], assuming 
a uniform velocity across the film. The solutions for 
the coupled energy and diffusion equations were 
obtained in form of a series of eigenfunctions. Also 
presented in ref. [ll], is an analytical solution for 
the temperature and concentration distribution at the 
entry region. Later on, Grossman [12, 131 improved 
the above model by eliminating the assumptions of 
uniform velocity across the film. Grossman and Heath 
]I 41, and Faghri and Seban [ 15,161 extended the lami- 
nar model to turbulent flow conditions and widely 
discussed the heat and mass transfer coefficients for 
various operation conditions. These studies [O-17], 
which more specifically dealt with non-isothermal 
vapour absorption into hygroscopic solutions, while 
accounting for the coupling between energy and 
diffusion, still considered the process as of infinite 
absorbate dilution. 

Recently Brauner et al. [18, 191 have shown that in 
film type absorption systems, where the absorbate 
concentration level is finite and comparable to that of 
the absorbent component (as in hygroscopic con- 
densation), the convective term in the lateral direction 
is to be accounted for. The inclusion of the lateral 
convective term in the diffusion equations is of import- 
ance as it results in enhanced transfer rates. The appli- 
cability of results obtained, however, is limited to 
short transferring surfaces, due to the low penetration 
assumption involved in the analysis. 

The present study is aimed at extending the analysis 
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Greek symbols 

x thermal diffusivity [m’s_ ‘1 

specific heat [kJ kg- ’ I(, .. ’ ] 
molar density [ma1 m- ‘1 
absorbate concentration [mol m ‘1 
absorbent concentration [mol m- ‘1 
diffusion coefficient [m’s ‘1 
film thickness [m] 

interfacial heat transfer coefficient 
[kJm-‘s-‘K- ‘] 

wall heat transfer coefficient 
[kJm_‘s~‘K-‘] 

non-dim~~sional film thickness, h/hi 
Jacob number, equation (I 8) 
thermal conductivity [kJ m- ’ sp ’ K- ‘1 
mass transfer coefficient [m s- ‘1 
Lewis number, D/cl 
molar flux [mol s- ’ m-‘1 

non-dimensional molar flux, equation ( 19) 
Nusselt number, h,hi/k 

non-dimensional heat flux, equation (42) 

vapour pressure [N m- “3 
Peclet number, 4 Re Pr 

Prandtl number, cpp/k 
film Reynolds number, K/p 
Schmidt number, v/D 
Sherwood number, equation (77), K&/L) 
non-dimensional absorption flux, equation 

(761 
temperature [K] 
downstream velocity [m s- ‘1 
non-dimensional downstream velocity, 
equation (15) 

perpendicular velocity [m s ‘1 
non-dimensional downstream velocity, 

equation (I 5) 
molar fraction of absorbate 
~r~ndicular direction [m] 
non-dimensional perpendicular direction, 

y/h 
downstream direction [m] 
non-dimensional direction, zfh. 

A* 

9 

B 

A.* 
n 

;“t 

surface inclination 
constants, equation (20) 

liquid flow rate [kg s- ’ m ‘1 
boundary layer thickness [m] 
non-dimensional thermal boundary layer 

thickness, 6,jhi 
non-dimensional concentration boundary 

layer thickness, 6,:ki 

non-dimensional perpendicular 

coordinate, Y/H 

bob-dimensional temperatures equation 

(18 
molar heat of absorption [kJ kmol ‘1 

non-dimensional heat of absorption, 
equation (22) 
viscosity [kgm-’ s-~ ‘1 

kinematic viscosity [m’s ‘1 
non-dimensional downstream coordinate, 
Z/PC 

value of < where firstly AH = 1 
value of < where firstly As = 1 

density [kg m- ‘] 
con-dimensional absorbate concentration, 
equation (15) 
vapour quality 

enhancement factor, equation (70), 
./V/</V”. 

Subscripts 
A absorbate 
B non-volatile absorbent 
C condensing vapour 
i at inlet 

n nominal 
W at the wall 

thermal 

concentration. 

Superscripts 
* at equilibrium 
- average 

0 infinite dilution. 

in order to elucidate and evaluate the effect ofabsorb- 
ate concentration level and process driving force 
downstream long transferring surfaces. 

2. THE PHYSlCAL MODEL AND GOVERNiNG 
EOUATIONS 

The physical system and coordinates are schema- 
tically described in Fig. 1. A concentrated brine 
of a salt concentration Cs,, water concentration CAi 
and temperature ri, enters the condensation com- 

partment at z = 0. It llows down over an inclined 
surface, in contact with pure stagnant saturated 
vapour (steam) at constant pressure P,. The satu- 
ration temperature of the condensing vapour r&P,> 
may be tower than the brine temperature Ti* However, 
the relatively cold vapour may condense and be ab- 
sorbed by the hotter brine film, provided the brine 
vapour pressure PX(T, C,) is lower than P,. ln the 
absence of noncondensables, the resistance to absorp- 
tion in the vapour phase is negligible and a liyuid- 
phase controlled condensation-absorption is to be 



Condensing Vapour Phase P(Ci, T*) = PC = const. (5) 

-2. PC ,Tc and the condensation heat flux through the free 

interface 

FIG. 1. Schematic description of the physical model and 
ductivity. Clearly, equations (5) and (6) represent 

coordinates. the coupling between the heat and mass transfer 

mechanisms. 

considered. Also, heat losses from the liquid phase to 3X* 

the adjacent condensing vapour are ignored. The heat 
NA,. = DC- + X,(N,,.+ NBJ. 

aY 
(7) 

released due to the hygroscopic condensation affects 
an increase of the brine temperature. Thus coupling 

The convective term in equation (7) can be omitted 

between the mass and heat transfer processes results. 
for either X, + 0 or NAY = -N,,, neither of which 

In formulating the governing equations it is as- 
holds in the case of hygroscopic condensation. For 

sumed that the vapour absorption rate is small com- 
instance, the minimum molar fraction of water, which 

pared to the mass flow rate of the brine film. There- 
corresponds to a saturated salt solution of MgCI,, 

fore, the physical properties of the liquid film are 
CaCI,, LiBr, NaOH, is about X, = 0.8. However, 

considered to be constant. 
since the salt is not transferred through the film free 

The simultaneous mass and heat transfer in the 
interface N,I ,,=* N 0 may reasonably be assumed and 

system at steady state is described by the continuity, 
equation (7) yields 

diffusion and energy equations : 

au al; 
a-+&=0 The velocity field (u, v) is to be obtained solving the 

ac, ac, ale, 
momentum equations with the appropriate boundary 

u- +v, = DT 
az oy (JY 

condition: no-slip condition on the solid surface 
and no shear stress on the vapour-liquid interface. 

aT ar d2T 
uztuay=aay, (3) 

Assuming a fully developed flow prevails from the 

leading edge, and consistent with the assumption of 
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(6) 

Here NAVIJZh is the interfacial molar condensation 
flux, I: the molar heat of absorption of the condens- 
ing vapour which is a function of the interfacial 
conditions, CX, T*, and k the brine thermal con- 

The molar flux in the perpendicular direction, y, is 

given by 

where diffusion and heat conduction in the z-direction 
low absorption rate (compared to the mass flow rate 

have been neglected with respect to those in the y- 
of the liquid film), the inertia terms in the momentum 

direction. The following boundary conditions apply : 
equations are neglected. In this case the downstream 
velocity u(y) is given by the well-known Nusselt 

z = 0, CA = CA,, T = T, solution 

y = h, c, = c;, T = T*(P,, C;) pg sin LY’ 

ac, 
n(y)=3U[;-;($I; z2=3+2 (9) 

y=o, -=o ay where h, U are the local film thickness and corre- 

T = T, = T, isothermal wall 
sponding average downstream velocity (both vary- 
ing with z). Utilizing the velocity profile in an integral 

or c?T continuity condition yields the relationship between 
~ = 0 
iiv 

adiabatic wall (4) the local film thickness, the corresponding local mass 
flow rate, r, and the absorptioncondensation molar 

where h is the local film thickness and Cx the absorb- flux at the free interface, whereby 
ate interfacial concentration, assuming a vapour press- 

NA,&,, = ; “df = Cd” 
h 

ure equilibrium at the liquid free interface at tem- 
perature level T* and external pressure level of the s 

udy = 
Cpg sin r’ 

z 0 P 
h’ddh, 

z 

vapour phase, P,. Note that though Cg, T* are both 
unknown functions of z, they are related to each 

(10) 

other by both the temperature-concentration-pressure The above formulation is rewritten in its dimen- 

equilibrium sionless form. The non-dimensional presentations of 
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equations (l)-(3) and boundary conditions, equation 

r 0 = 0 isothermal wall 

or 
adiabatic wall 

where 

Pr = v/a; 
D Pr 

Le=--=Si. M. 

(12) 

(13) 

(144 

(14b) 

(14c) 

(15) 

Here, h,, Cr, denote the film thickness and corre- 
sponding average downstream velocity at : = 0. Czi 
is the equilibrium conccnt~~tion at the entry tem- 
perature T and vapour pressure PC, Cf = C,“(T,, P,) 

(and thus represents the interfacial concentration in 
the case of isothermal absorption). The equilibrium 
temperature T: = T*(C,,, P,) includes the boiling 
point elevation corresponding to brine concentration 
C,.,i which is in equilibrium with its vapour at pressure 
P,. In fact T* - r is a useful measure of the nominal 
available temperature driving force for the hygro- 
scopic condensation process. Note that, the actual 
temperature drop T,- T, may be negative in the case 
of hygroscopic condensation, while condensation still 
takes place. 

The dimensionless ~unknown) interfacial tempera- 
ture and concentration, 4” and 8*, are related to each 
other by the dimensionless form of equations (5) 
and (6) 

P,(#*, Ox) = cons&. (16) 

a0 Pe 
-.,v. 

3Y YL,, = Ja 

Here Ju denotes the Jacob number 

(17) 

and A” the dimensionless molar flux of condensation 
at the free interface, which by equations (8) and (15) 
reads 

“J = (CA{-C,*,)/C; /9 = l-CA,/C. (20) 

Note that 7 represents a nominal driving force process. 
Combining equations (17) and (19) yields a relation 
between temperature and concentration gradients to 
be satisfied at the film free interface 

where A is a dimensionless heat of condensation- 
absorption defined by 

Clearly, in order to proceed with the solution it is 
required to specify an equilibrium relation between 
temperature, composition and vapour pressure (equa- 

tion (16)). Experimental data, available in the litera- 
ture for various brines is usually formulated in a linear 
relation between temperature, composition and the 
logarithm of the vapour pressure at equilibrium [12]. 
Under conditions of constant vapour pressure, P,, 

a linear relation specifies, C: = a, T*+a,, which in 
terms of the dimensionless concentration and tem- 
perature defined in equation (15), reads 

f$“+O* = 1. (23) 

The solution also requires data of the latent heat 
condensation of vapour over the brine interface 
$(C,*, T*), which is given by [4] 

;u: = ~*~ct,7.‘-~~(T*-T,)-(f -x)1. (24) 

where is is the heat of evaporation (or conden~~tioll) 
of a unit mass of pure water from a solution of con- 
centration C,*, which is in thermodynamic equilibrium 
with its (superheated) vapour at a temperature T*. 

Equation (24) includes a correction of A* for the sen- 
sible heat losses due to condensation of relative cold 
vapour at temperature T, d T* with a specific heat 
cP_ and for the latent heat loss when vapour con- 
densation of quality x < 1 is involved. For absorption 
of water vapour the dependence of A,* on C,* and T* 
is known to be rather weak, and a constant A,* (con- 
stant A and Jn) is assumed. 
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3. SOLUTION OF THE GOVERNING 

EQUATIONS-INTEGRAL FORMULATION 

In the case of absorption of sparingly soluble gases, 

X, CC 1, convection in the perpendicular direction is 
negligible and the term of (1 -X,) in equation (8) 
degenerates to 1, or y~#+b + 1 in equations (19) and 
(21). When a constant film thickness is also assumed, 
the formulation reduces to the coupled heat and mass 
diffusion equations solved by Grossman [I 21. 

For the finite concentration level of the absorbed 
component as in hygroscopic condensation, equations 
(17)-(19) yield a non-linear relation (in terms of 
the unknown function 4), which makes the exact 

approach to the solutions of the partial differential 
equations unamenable. Recently, an exact solution 
for finite absorbate concentration was presented [I 8, 

191, assuming low penetration of the (heat and mass) 
boundary layers. However, the validity of this solu- 
tion is restricted to a short transferring surface. Here, 
in order to extend the analysis of the effect of finite 
absorbate concentration level on the associated mass 
and heat transfer rates downstream, an integral ap- 
proach is employed. 

The integral formulation is obtained by integrating 

equations (1 l)-( 13) across the local film thickness H, 

while utilizing equations (14), (17)-(19). The corre- 
sponding integral continuity, diffusion and energy 
equations read 

_+-=L d I’ Pe d< o 
HUdq = - V/l,,=, ; continuity 

(25) 

I a0 
- ; energy (27) 

H h/,,=o 

where 

,I=:=;; [=ZjPe. 

The solution of the diffusion and energy requires that 
the concentration and temperature profiles across the 
film will be specified (the velocity profile is given in 
equation (15)). The assumed profiles are chosen so as 
to match the boundary conditions and the physical 
situation prevailing downstream. As the liquid enter- 
ing at z = 0 is at a state of nonequilibrium with the 
vapour phase, a process of simultaneous heat and 
mass transfer sets in at the free interface and extends 
its effect gradually into the film. Hence, the mass and 
thermal boundary layers grow in the downstream 
direction until they occupy the entire depth of the 

film. The shapes of the concentration and temperature 

profiles are formulated in accordance with the relative 
thickness of the corresponding boundary layers. 

3.1. Concentration pro$les 

Denoting the downstream location where the con- 

centration boundary layer, 6,, first occupies the entire 
depth of the film by &, the developing boundary layer 
region, where A, = 6,/h < 1, extends over 0 < 5 < &. 
In this region, a concentration profile, shaped in terms 
of the local boundary layer thickness, A$(<), which 
satisfies boundary conditions (14b) and (14~) reads 

0; 
4= 

i 

for0 $ q < (I -A,) 

4*[(1 -A@-q)/A,]*; for(l-A+) < q d 1 

0 < 5 < 5+ (29) 

whereby 

(30) 

Note that equation (29) also satisfies C$ = 0 and 
@/all = 0 at the edge of the diffusion boundary layer, 
11 = 1 -A8. The corresponding bulk concentration in 
this developing region reads 

In the fully developed boundary layer region, where 

5 > <+ and A+ = 1, the concentration profile is shaped 
in terms of the (unknown) dimensionless concentration 
at the wall, &,(t), to match boundary conditions (14b) 

and (14~) 

whereby 

and 

& = 0 at 5 = &. (34) 

The bulk concentration in the developed layer region 
reads 

$= 0’U$d~=;,(9d*+Il&); 
s 

[>&. (35) 

Note that at 5 = tg, where A+ = 1 and &, = 0, equa- 

tions (29), (32) and (31), (35) yield identical expres- 
sions (4 = 4*~* and ~6 = 9H*+*/20). 

3.2. Temperature prof?les 

The developing boundary layer region, A, = S,/ 

h < 1, extends over 0 < 5 < I$,, with & denoting the 
downstream distance where the thermal boundary 
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layer thickness reaches the (local) film thickness. 
The temperature profile in this region is shaped in 
terms of the local thermal boundary layer thickness, 
As, to match boundary conditions (14b) and (14~) 

0; forO<gGl-A, 
O= 

@*[(I -Ac-;)?)/&]~; for 1 -A(, < q c I 

whereby 

a0 20* 

d~,,z-, A” . 

The corresponding bulk temperature reads 

(37) 

Note that equation (36) also satisfies f3 = 0 and 
&J/a? = 0 at q = 1 -A,,. Equations (36)-(38) apply to 
both the constant temperature wall and the adiabatic 
wall cases. 

In the region where the thermal boundary layer 
becomes fully developed, A, = 1 and { > re, a dis- 
tinction is to be made between the profile assumed 
for the isothermal and adiabatic wall cases. For an 
isothermal wall, equation (14~) requires f?, = 0, and 
the temperature profile is shaped in terms of the 
(unknown) dimensionless heat flux at the wall, QW([). 
The assumed profile, which satisfies boundary con- 
ditions (14b) and (14~) and the corresponding bulk 
temperature are given by 

whereby 

(41) 

(42) 
- =20*-Qw; f&=0; <>5,, (48b) 
%,_l 

and 
or for adiabatic wall and g > t8 

For the adiabatic wall case, QW = 0 by equation 
(14c), and the assumed temperature profile, shaped in 
terms of the unknown wall temperature, O,(t), which 
satisfies boundary conditions (14b) and (14~) reads 

a0 
;;_ = 2(R* -0,) ; QW = 0 ; 5 > 5s. 
etlri=l 

(48~) 

8=;(9H*+llH,) tale; QW=O (44) 

whereby 

Equations (46)-(48) with equation (17) and the equi- 
librium condition at the free interface, equation (23), 
provide five equations to be solved for the following 
five unknowns : If, 8*, qF, A+(5 < &J or qh,(t > &$), 
and A,(c < t@) alternating with Q,(t > &) for iso- 

a0 
~,~I 

=2(0*-o,) (45) 

and 

The assumed profiles ensure a smooth transition at 
g = &,. At, = 1, since equations (36) (39) and (43) all 
yield 0 = 0*q2 at t = & and the corresponding 8, 
by equations (38), (40) and (44), reads 0 = 9H’H*/20. 

Substituting the above velocity, concentration and 
temperature profiles in equations (25)-(27) and carry- 
ing out the integration over the film thickness yields : 

Continuity equation 

(46) 

D@usioa equation 

Energy equation 

For isothermal wall and i; > & 

a0 



Non-isothermal vapour absorption into falling film 713 

ADIABATIC WALL, Cl,= 0 ISOTHERMAL WILL, &,rO 

(b) 

FIG. 2. Schematic description of the various integration 
zones. 

thermal wall or with f3,([ > &J for adiabatic wall 
conditions. All are functions of the downstream dis- 

tance, 5. 
The boundary conditions used for solving the three 

simultaneous first-order differential equations, equa- 

tions (46)+48), are 

A,=O; AH=O; H=l at <=O. (49) 

It is to be noted that, consistent with the concentration 
and velocity profiles used in the derivation, & = 0 for 
5 < &+, and QW, 19, = 0 for 5 < ts. Thus, the values of 
the relevant variables at the transition points from 
the developing boundary layer regions to the fully 
developed boundary layer regions (at 5 = 5b where 
A$ = 1 or at 5 = & where A0 = I), are defined as well. 

Figure 2 schematically identifies the three inte- 

gration zones. In zone 1 both the thermal and con- 
centration boundary layers are developing; in zone 
2 one is fully developed and the other still develop- 
ing ; and in zone 3 both boundary layers are fully 

developed. The exact forms of the differential equa- 
tions, used for integration in each zone, are detailed 
in Appendix A. 

A computer program was set for integrating the 
above system, starting with the initial values defined 
in equation (49), using a Runge-Kutta type method. 

The procedure performs an integration step and the 
results of each step serves as inpdt for the next one. 
The step size is automatically controlled according to 
the accuracy requirements and speed considerations. 

Calculated results and discussion are presented 
below (Section 6). Analytic solutions obtained under 

the assumption of low penetration and for isothermal 
absorption follows. 

4. LOW PENETRATION (ZONE 1) 

The equations prevailing in the first zone are equa- 
tions _(46), (47a) and (48a). For relatively short 
exposure time (5 << &,, [,,+) the thermal and diffusion 
boundary layers are limited to the near free interface 

region with AH, AC << 1. 
Eliminating ,Y between equations (47a) and (48a) 

for Ja 0* << 1, and integrating the resulting differential 
equation while applying boundary condition (49), 

yields 

Combining boundary conditions (17) and (23) yields 

For A,, A$ << I, equation (50) reads 

Eliminating AJAH between equations (51) and (52) 
results in the following cubic equation for 4* 

I 4* 
[ 1 

= /?Le ______ 
0$*+/q l-4* = XT 

(53a) 

or 

Ym*‘+(fi-2:- &)m”‘+6-2m*+b = 0. 

(53b) 

Thus, in the entry region and for sufficiently small 
5, where the low penetration assumption is valid, 4*, 
H* are constant (5 independent) and determined by the 
parameters /X y, A and Le. Substituting the solution 

obtained for 4* in equation (51) yields the corre- 
sponding As/As in this region. Note that equation 
(53a) may be used to derive 4*(( = 0), a boundary 
condition which is applied in the integration pro- 
cedure (see Appendix A). 

For finite dilution, fi < 1, but in the limit of low 
driving force, y -+ 0, equation (53b) yields 

4*= l 
1-t MBJ(Le)) ’ 

W’,/(W) /j*=1-(#p--_~ 

I+ N&/(W) 
(544 

while for infinite dilution of absorbate, as in the case 
of sparingly soluble gases, both ?;4* + 0 and fi + 1, 
and the solution of equation (53b) reads 



FIG. 

---- Infinit dilution eq. (54b) 

- Finite dilution, y-0 , eq. (54a) 

Finito dilution, r#O , eq. (53al 

1 I 1 L I 1 

0 I 2 3 4 5 6 7 

HEAT INTERACTlON PARAMETER , A/G 

3. Interfacial absorbate concentration 
etration region. 

in the low pen- 

#)*” = __I_. 
A/&e) -I- 1’ 

Q*“= I-~‘“=-+$$. (54b) 
e 

Equation (54b) is identical with the exact analytical 
solution given by Grigor’eva and Nakoryakov [lo]. 

The effect of finite absorbate concentration level 
is demonstrated in Fig. 3, for p = 1 -XAi = 0.5 and 
various heat interaction parameters A/J(Le). It is 
shown that with increasing the absorbate concen- 
tration levels the interfacial equilibrium concentration 

significantly deviates from the values obtained 
under the assumption of infinite absorbate dilution. 
The decrease of interfacial concentration, 4*, with 

increasing the absorbate concentration and the 
nominal driving force ]y] evolves from heating-up of 
the film interface by the enhanced absorption rates, 
as will be further discussed below. These trends are 
consistent with the exact solution recently obtained 
for the low penetration region [ 191. 

The variation of H, A, and As in the downstream 

direction is derived by substituting equation (51), in 
the continuity, diffusion and thermal equations (4(i), 
(47a) and (48a), which for A,, A0 << 1, read 

dH 2yLe c$* 

dt 
-- . N(( = 0) = 1 (55) 

3H3 (y$*+B)A+ ’ 

d A, 4LeP 1 
---= 
d5 H4 (?I’$* + P)A, 

; A& = 0) = 0 (56) 

dAB 4 -I = -. 
dy* H4AH’ 

A,,(< = 0) = 0. (57) 

By equations (55) and (56) 

dH ly --_= -- dA, 6BH; H(A$=O)= 1. (58) 

Inteerating eauation (58) vields H(A,I. whenbv 

H = ,-WWN, (59) 

while substitution of equation (59) in equation (56) 

and integration yields an equation for A,(<) 

16 Ley’ 5 
= ?J 7 (?4* +fl>. (60) 

As indicated by equation (59), for a sufficiently low 
process driving force ]yj = (C~i-C,i)/C < 1, ]ulA4 << 1 

and thus H = 1 may reasonably be assumed. In this 
case the integration of equations (56) and (57) yields 

or 

An= JW) (62) 

(63) 

and with X,;, X,* + 0 (infinite absorbate dilution) 

A$/Ati = J(L+ 
For most absorbent liquids Le << 1, and therefore 

the thermal boundary layer is expected to become 

fully developed when the concentration boundary 
layer is still quite thin. For finite dilution however, an 
enhanced growth of the diffusion boundary layer is 
predicted by equation (63), and Ad, > Ae may result 
even with Le < 1. 

Note that equations (54) imply that for sufficiently 
low driving force, the solution for the temperature 

and concentration profiles for finite dilution are ident- 
ical to those obtained for infinite dilution, when A is 

replaced by AJP. Inspection of the general formu- 
lation, in equations (46)-(48), reveals that this obser- 

vation is not specific to the low penetration region but 
valid everywhere downstream (see Appendix B). 

5. ISOTHERMAL ABSORPTlON 

In some cases the heat interaction is small and the 
process maybe considered isothermal, with both A 

and 0 identically zero and $* = 1. The effect of finite 
absorbate concentration level is explored here for 
sufficiently low absorption driving force (small y), 

‘where a constant film thickness, H = 1, may reason- 
ably be assumed. In this case only the diffusion equa- 
tion is to be considered. 

5.1. ZoneL:A@< I andi;<& 

Equation (47a) reduces to 



&‘ = .--2L.e 2_ L 
Pe y-tp'3A; 

Integration yields 

8Lep 

= GTE*. 

Equation (65) is solved for A\,(t) 

(64) 
the convective term in the interfacial absorption flux 
(equations (7) and (8)). The results of equation (71) 
are consistent with the finite dilution enhancement 
effect recently predicted in refs. [IS, 191. 

(65) 5.2. Zone 2: A, 3 1, 5 > & 
Equation (47b) reduces to 

where Ai denotes the corresponding value obtained 
for infinite absorbate dilution (y -+ 0 and p + 1). For 

The corresponding solution for the average con- 

A, K 1 (low penetration), equation (65) yields 
centration is obtained by substituting the solution for 
$+J<) in equations (32) and (35) (with 4* = 1, H = 1). 
Combining equations (69), (72) and (73) yields the 
amplification due to the convective term, which 
evolves for finite absorbate dilution with p < 1 and 

(68) 1’ < 0 

The corresponding solution for the average con- 
centration is obtained by substituting As by equation 
(66) in equation (31) (with r$* = 1 and H = 1). Note 
that since y < 0 (see equation (20)) As/As > 1, and an 
enhanced growth of the diffusion boundary layer with 

Le i: = xe$. (74) 

increasing the absorbate concentration level (decreas- 
ing 8) is predicted. Solving equation (66) for A, = 1 

Note that since y < 0, an exponential decay of the en- 

yields the downstream location where the boundary 
hancement is predicted in the downstream direction. 

layer becomes fully developed 

6. RESULTS AND DISCUSSION 

As is indicated by equations (46)-(48), the solutions 

As expected, <+ < L$ results. 
for the non-dimensional concentration of the absorb- 

The corresponding absorption flux at the film free 
ate and temperature profile are determined by the 

interface is obtained by substituting the solution 
concentration level, CJC = 1 - 8, the nominal driv- 

obtained A,(t) in the expression for JV”, given in equa- 
ing force 1’ = (Czi - C,,)/C, heat of absorption A and 

tion (64). An enhancement factor, 0, is introduced, 
the Le of the solutions involved. Note that Pe does 

which expresses the ratio between the actual absorp- 
not appear explicitly upon substitution of ,P-, and Jn 

tion flux, ,K, and that obtained under the assumption 
is related to the other parameters as in equation (22). 

of infinite dilution, .,V” 
The calculated results are presented in what follows 
in terms of these non-dimensional parameters. The 
various cases considered are summarized in Table 1. 

Figures 4 and 5 present typical variation of the 
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Integration yields 

For instance, when equation (68) is substituted for 
concentrations and temperatures in the absorbing film 

A,/AS (low penetration region) 
with the non-dimensional do~nstrealn distance r = z/ 
(h, Pe). Curves are given for the calculated interfacial 
and wall concentrations #*, #I* (Fig. 4), tempera- 
tures O*, 0, (Fig. 5) and the corresponding vari- 
ation of the thermal and concentration boundary lay- 

As is indicated by equations (70) and (71) the effect ers (Fig. 6) for isothermal wall and adiabatic wall 
of finite dilution, as represented by /I’ < I and y < 0, conditions. The effect of the absorbate conccntra- 
results in an enhanced absorption flux, with Sz 2 1. tion level is studied by varying p and maintaining a 
The predicted enhancement evolves from retaining 

_ 
low driving farce (y + 0). Some relevant analytic 
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Case studied 
~- 

General non-isothermal Isothermal wall 
vapour absorption 
)‘. p, A # 0 Adiabatic wall 

Non-isothermal low Isothermal wall 
nominal driving force 
j’*O;P,A#O Adiabatic wall 

Non-isothermal Isothermal 
low penetratian 
y, 8, A # 0; A,,, A$ << 1 zkabatic wall 

Isothermal 
absorption 
h=O;y,fl#O 

N. BRAUNER 

Table I. 

Model 
equations 

Related 
figures 

(46), (47), (48a) or (48b) 

(46), (471, (48a) or (4%) 

Appendix B 

Section 4 

Section 5 

expressions for this particular case are derived in 

Appendix B. For infinite absorbate dilution y --f 0 and 
/I + 1 (and for constant film thickness) the results 
presented converge to those obtained by Grossman 

[121. 
Initially, for small l, the interfacial film temperature 

and concentration are that predicted by the low pen- 
etration theory (equation (54a)) and 8, = &, = 0. 

The behaviour in this region is the same for the adia- 
batic and isothermal wall cases. Increasing the con- 
centration level affects significantly higher interfacial 
temperature due to higher absorption rates and thus 
lower interfacial concentration. A considerable devi- 

ation from the infinite dilution prediction (equation 
(54b)) is demonstrated for X,, > 0.2 (b < 0.8). 

The location where the thermal boundary layer 

becomes fully developed (A(, = 1 at X = {,,) marks the 
of the first integration zone. This location is 

b) ADIABATIC WALL 

.6 

NONDIMENSIONAL DOWNSTREAM DISTANCE a < ’ Z/(Pehi) 

FIG. 4. Downstream variation of film concentration : effect 
of inlet absorbate concentration level, Le = 10m '. A = IO- '. 

9, 10 

4(a), 5(a), 6(a), 7(a), (c), 8(a) 

4(b), 5(b), 6(b). 7(b), 8(b) 

3 

unaffected by the concentration level (see Fig. 6). As 

expected the concentration boundary layer develops 
considerably slower than the thermal boundary layer 
for the case studied with Le << I, and is only partially 

developed at 5 = c&. It reaches the fully developed 
thickness, A, = 1, at the end of the second integration 
zone where 5 = &,. Accordingly, 0, and &,, start devi- 

ating from zero at < = to and td, respectively. 
Figure 6(a) indicates that the concentration level 

hardly affects & in the case of the isothermal wall. For 

the adiabatic wall case, however, the concentration 
boundary layer is shown to develop faster when the 
absorbate concentration level is increased (Fig. 

6(b)). The resulting &, is always shorter than the 
corresponding value obtained under isothermal wall 

conditions. 
Moving downstream, the trends observed for the 

variation of the film concentrations and temperature 
differs in the isothermal and adiabatic wall cases. In 

-_ I.0 
c: 
*I_ 
c .8 
-L 
? .6 
t 

+ .4 

sz 
3 .2 
k 
B 
p 1.0 

if 

5 
.8 

G 

-I 6 

3 
z .4 

H 
a .2 

P 
0 

.I I. IO too Kx)O 

NONDIMENSICNAL DOWNSTREAM DISTANCE. [=Z/(Pehi) 

FIG. 5. Downstream variation of Mm temperature : effect of 
inlet absorbate concentration level, LP = 10. ', A = 10m2. 
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FIG. 6. Effect of inlet concentration level on the development 
of boundary layers. 

the former case (Figs. 4(a) and 5(a)), the interfacial 
and bulk temperature first increase slightly, following 

the trend of zone 1, due to the heat released into the 
film. Then, for a sufficiently long transfer surface, the 
film temperature approaches the wall temperature and 

6*, 0 decrease, approaching zero as all the heat is 
removed through the wall. The interfacial absorbate 

concentrations follow trends opposite to that of the 
interfacial temperature ($* = l-O*), with the wall, 
bulk and interfacial concentrations approaching 1 for 

5 + co. Hence, the effect of the concentration level 
diminishes in the downstream direction. 

In the adiabatic wall case (Figs. 4(b) and 5(b)), the 

heat of absorption is not removed from the 
film. Consequently, the wal1, bulk and interfacial 

temperatures increase monotonically towards a com- 
mon asymptotic value. This final asymptotic value 
increases with increasing the concentration level, due 
to the enhanced absorption rates associated with 

higher absorbate concentration level (see also Fig. 7). 
Again, since 4* = 1 - 8*, the interfacial concentration 

monotonically decreases downstream, towards its 
asymptotic value, which decreases with increasing the 
concentration level. Hence, for adiabatic wall con- 
ditions, the effect of the absorbate concentration lever 
is sustained far downstream whereby (see Appendix 

B) 

(75) 

The corresponding values of the interfacial absorp- 
tion (condensation) flux are presented in Fig. 7 in 
terms of S/z,. It relates to the non-dimensional absorp- 
tion flux defined in equation (19) 

D) ADIABATC WALL 

NONDiKNSIONAL DOWNSTREAM DISTANCE. {=2/t Peh) 

FIG. 7. Effect of inlet concentration level on the local non- 
dimensionat absorption flux and wall heat flux. 

Le 
Sh, = ~ 

hi 
(-y)PecY = D(C~l-CA,)dvAY’Y=H 

1 %J I------- 

d Y6*+Ba Y=H 
(76) 

and is actually the Sherwood number which includes 
a nominal transfer coefficient, defined with reference 

to the nominal driving force, Sh, = K"hi/D (K, = 

N*Y/[c~i-c,4il)~ 
As is shown in Fig. 7(a) (isothermal wall), the 

absorption rates monotonically increase with increas- 
ing the absorbate concentration level. This enhance- 
ment reflects the augmentation of the mass transfer 
rate due to the inclusion of the convective term in 

equation (7). The enhanced absorption rates affect 
higher rates of heat removal through the isothermal 
wall (see Fig. 7(c)). Clearly, for a long transfer sur- 
face, the effect of concentration level on the transfer 
rates diminishes as the driving force for the absorp- 
tion process (4* -&J approaches zero. 

In the adiabatic wall case (Fig. 7(b)), similar trends 
for the effect of the concentration level on the inter- 
facial absorption rates are obtained for relatively 
short surfaces. Downstream, however, the augmen- 
tation of the transfer rates is damped due to the 
deterioration of the process driving force. Finally, 
for long transfer surfaces, this deterioration results in 
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lower local absorption rates for higher absorbate 
concentration levels. 

The local transfer characteristics may be further 
studied through the downstream variation of local 
Sherwood and Nusselt numbers (based on the local 
transfer coefficient defined with respect to the local 
process driving force). The non-dimensional coefficient 
of local mass transfer from the interface to the bulk 

is given by 

K = NAYIY-II 
q-c,. (77) 

The non-dimensional coefficient of,local heat transfer 
from the interface to the bulk (due to the non-iso- 
thermal absorption) reads 

and the non-dimensional heat transfer coefficient 
from the bulk to the wall is given by 

h,h, 
Nu, = k = -1_--- !? 

H(B-8,) aleso; 
h, = A- 

CT- Tw). 

(79) 

Figure 8 describes the above local Sherwood and 
Nusselt numbers as a function of the downstream 
distance for the isothermal and adiabatic wall con- 
ditions (corresponding to Figs. 4-7). As expected, Sh 

is very large for small 5 where A@ CC 1 and decreases 

b) ADIABATIC WALL 3 

.I IO 100 1000 

NOMHENSIONAL DOWNSTREAM DISTANCE. <=Z/tPahi) 

FIG. 8. Downstream variation of the local Sherwood and 
Nusselt numbers effect of the inlet concentration level. 

towards an asymptotic value reached at 5 > &, where 
AH = 1. Evidently, the mass transfer coefficient in- 
creases with increasing the absorbate concentration 
level. Near the entry (zone 1). the behaviour is idcnt- 
ical to the adiabatic and isothermal wall cases and the 
augmentation due to finite absorbatc dilution is as in 
equation (71) R = l/b (independent of A and Le). As 
the thermal boundary layer reaches the wall (zone 2, 
5 > &) a discrepancy is noticed between the iso- 
thermal and adiabatic wall Sh, the former being larger 
and is more sensitive to the absorbate concen- 

tration level. Far downstream, an asymptotic value 
is reached, which is again identical for the adiabatic 
and isothermal wall conditions. Based on the analytic 

expression for &, U*, 8, derived in Appendix B, the 
asymptotic value which evolves from equation (77) is 
40/l l/I. Hence, the asymptotic augmentation of the 
mass transfer coefficient due to finite dilution (Sh, / 

ShO,) is again proportional to l//j. For infinite 
dilution (/I = 1), Sh, = Sh$ = 3.64, which is about 
5% larger than the exact value obtained by Grossman 
[13] for the case of infinite absorbate dilution. The 
overprediction of the transfer rates by the integral 
method is, however, higher upstream, in the low pen- 
etration region [12, 131. Therefore, some over- 
estimation of the concentration level effect in this 

region is expected [ 18. 191. 
The downstream variation of the interfacial and 

wall Nusselt numbers is considerably less pronounced. 
In the first zone, where AH < 1, the interfacial heat 
transfer coefficient decreases towards the asymptotic 
value, reached at 5 > &,. Note that, for [ < to, NM is 
identical in the adiabatic and isothermal wall cases, 
while for t > <,, the former is the larger. The asymp- 
totic value (obtained by substitution of the analytic 
expressions derived for Q,, H*, 0 in Appendix B into 
equation (78)) yields Nu(t + co) = 40/l 1 for the adia- 
batic wall and Nu(t + a) = 8/3 for isothermal wall 
conditions. 

The wall heat transfer coefficient, Nu,, is zero at the 
first integration zone, as the effects of condensation at 
the interface have not yet reached the wall. Beyond 
c = te, for the isothermal wall, Nu, increases towards 
the asymptotic value Nu,(l + CQ) = 1.6. Obviously, 
Nu, = 0 for the adiabatic wall case. Note that both 
NM and Nu, are independent of the absorbatc con- 
centration level. Hence, the downstream decay of the 
heat transfer rates are determined by the deterioration 
of the temperature driving force (as discussed with 
reference to Fig. 5). Also, it is of interest to note 
that the asymptotic values of Sh, Nu, Nu, are all 
independent of the other film parameters such as Le 
and A. 

The discussion so far relates to the case of non- 
isothermal absorption under a low nominal process 
driving force, ‘/ + 0. For a finite driving force (.j < 0) 
the film flow rate increases downstream and its local 
thickness is to be evaluated through the integration 
of equation (46). Also, as it has been discussed with 
reference to Fig. 3, increasing the process driving force 
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FIG. 9. Effect of the process driving force on the downstream 
film concentration, absorption rate and heat flux at the wall 

(isothermal wall). 
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FIG. IO. Downstream variation of the local film thickness 
and local Sherwood and Nusselt numbers effect of process 

driving force (isothermal wall). 

while maintaining A, Le and /3 constant affects higher 

interfacial temperature and thus lower interfacial 
absorbate concentrations. 

The impact of increasing the driving force on the 
film transport characteristics is demonstrated through 
Figs. 9 and 10. The results are obtained for an iso- 

X*i = 0.7. The nominal driving force may be increased 

up to y = X,,-Xli = -0.3, in which case the film 
interface (under an isothermal situation) consists of 

pure absorbate (pure water in the case of hygroscopic 

condensation on brine). Although the local driving 
force 4* - & first decreases with Iyj (small < in Fig. 

9(a)), it recovers downstream, and the non-dimen- 
sional absorption flux (defined in equation (75)) as 
well as the heat removed through the wall increase 

with increasing the driving force (Figs. 9(b) and (c)). 

Consequently, the downstream film thickness 
becomes thicker, deviating from H = 1 (Fig. lo(a)). 

Clearly, a significant change in the film flow rate 
may be accompanied by a change in the film physi- 
cal properties which is then to be accounted for. 

The corresponding Sherwood and Nusselt numbers 

are shown in Fig. 10(b). It is noted that the interfacial 
and wall Nusselt numbers for 5 --+ co are here no 
longer constant. The decay of the asymptotic values 

with increasing the process driving force results from 
the downstream increase of the film thickness. On 
the other hand, the Sherwood number increases with 

increasing the driving force as expected, since the 
downstream absorbate concentration level increases 
towards XX,. However, comparison with the asymp- 

totic values obtained for y + 0 (Fig. 8) reveals that the 
increase of Sh with IyI is damped due to the resulting 
thicker film and thus, it does not reach the asymptotic 

Sh obtained for fl = 1 -X,*, with y -+ 0. 
Similar trends (not shown here) have been obtained 

with an adiabatic wall condition, although it seems 

that for an adiabatic wall the effect of the process 
driving force is less pronounced and the results 
obtained with y -+ 0 are valid for a wider range of 

y # 0. It is to be noted however, that a change of y (for 

a given absorbing solution) affects a corresponding 
change of A, which is then to be accounted for. The 

exclusion of this change of A (Figs. 9 and IO) is aimed 
at isolating the influence of y # 0 in comparison with 

the results obtained for y = 0 (Figs. 4-8). 

7. CONCLUDING REMARKS 

A mode1 is presented for the analysis of the com- 
bined heat and mass transfer involved in non-iso- 
thermal absorption of vapour into falling liquid film, 

as in hygroscopic film condensation. In distinction 
to absorption of sparingly soluble gases, characterized 
by infinite dilution of the absorbate, in vapour absorp- 

tion the concentration levels of absorbate and absorb- 
ent are comparable. 

The integral approach has been employed for 
solving simultaneously the continuity, diffusion and 
energy equations for the cases of an isothermal and 
adiabatic wall. Some analytic expressions are derived 
for limiting cases, such as low penetration, low process 
driving force and isothermal absorption. 

The effect of the absorbate concentration level and 
process driving force on the film transfer charac- 

thermal wall with an inlet absorbate concentration of teristics has been studied. It has been shown that in 
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physical systems, where the absorbate concentration 
level is finite and is comparable to that of the absorb- 
ent component, the convective term in the lateral 
direction is to be accounted for. The inclusion of 
the convective term is of importance, as it results in 
enhanced transfer rates. Therefore, the use of em- 
pirical correlations, or models, obtained for infinite 
absorbate dilution, may yield conservative transfer 
rates in the design of hygroscopic condensation or 
evaporation systems [IA]. 
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APPENDIX A. MODEL DIFFERENTIAL 
EQUATIONS 

Zone1:A9,Ao< l,t<&,<,, 
The prevailing equations are equations (46), (47a) and 

(48a). Equations (23) and (17) are used to eliminate A”, f3* 
whereby 

o* = l-4* (Al) 

A 

0 
= (1-4*)(~4*+/% 

hp* (A21 

The derivation yields the following three simultaneous 
first-order differential equations for H, As, d* : 

dH 2yLe +* _= -- 
d5 

-~. H(c = 0) = 1 (A3) 
3 H’ (y4*+p)A, ’ 

d A, H’QE5-Eq 
p= 
dl H3[&>q-~:T] 

; A+(( = 0) = 0 (44) 

W* _ H’E,E, -e4 

d5 ’ 96H’[~Z~6-~j]’ 

+*({ = 0) obtained by equation (53) (A5) 

with 

1 

c’= -lo 

(l-3/1OA;) 

e6 = ‘* (1 - l/lOA;)A;’ 

Evidently, the equations apply for both the adiabatic and 
constant wall temperature cases, since in zone 1 O,, &, 
QW E 0. The value of 5 where either A0 or A0 becomes equal 
to unity marks the end of zone 1. 

Zone2a:A,~1,A9~1,50~5$5~ 
For sufficiently low Le, the thermal boundary layer 

becomes fully developed first. In this region (where A0 = 1 
and A$ < 1) a distinction must be made between the adia- 
batic and constant temperature wall cases. 

Constant temperature wall. The equations in effect are 
equations (46), (47a) and (48b). Equations (23) and (17) are 
used to obtain B* = 1 -qS* and 
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Qw=2 l-4*- 

[ 

*‘* 1 of 5 where A$ becomes equal to unity marks the end of 

(~4* +B)A$ 
(A7) zone 2a. 

Substituting Q, and O* yields the following three differential Zone2b:A,=l,A,<l 
For relativelv high Le and/or high absorbate concen- equations for H, AC 4;: 

dH 2Yb fP* p= 
dir 3 H3 (y+*+B)A, 

_ I I 

tration level, the concentration boundary layer develops 

(A8) faster than the thermal boundary layer and thus co < tn. The 
equations in effect in this zone are equations (46), (47b) 
and (48a), and these apply for both the constant tem- 

(A9) perature and adiabatic wall conditions. 
Equations (23) and (17) are utilized to express +*, & in 

dA?\, asei 

d5 =a4-H)EI 

E, = 16+ - 
7AB 7A(l -A$/lO) 

(y+*+WAo + A&l -3/IOA;)(y+*+B) 

Y+* 
E> = l+ %A,(1 -A$/lO) 

1-+*- 
2f@* 

(y+*+D)A, 1 

(AlO) 
terms of (H, An, +*) whereby 

o* = 1 _(j*; & = 4*_ (1-+*;;+*+8), (417) 
II 

The differential equations integrated to obtain H, AO, c$* read 

dH 2 Ja (l-4*) 
p= 
dt 3 H’ A0 

(Al8) 

d4* a, 

d5 H%, 

(Al9) 

(A20) 

28ALe@* where 

+ HA;(y~*+~)2(l-3/10A$2 
s,=l+ & (2Y4*+,+Y)+ 

[ 

(Y~*B)(I -A;/lO) 

4Le p s2 B 
(1 _3,lOA2) 

D 1 ” =-F (y~j*+&A~(l-3/lOA;) 4Ja (l-4*)’ 4(1-o*) 
Am(l -A;/lO) 

s’=+(l-3/lOA;)’ 
(Al I) 

&2=x7 
[ 

I- ;An(l -A;,lO) 1 + r 
II 

Adiabatic wall. The equations in effect are equations (46), 
2LcB (I -+*) 11 (1-4*)(Y+*+B) 

(47a) and (48~). Utilizing equations (23) and (17) yields 
“=HI\ A0 Ao II 

0*= 1-$*and 

w* 
Ow = I-+*- Aa(y$*+/j)’ (Al2) 

20 AA; -e= 

Ed = H3(l -+*)(l-3/lOA,2) 

The differential equations integrated to yield H, A,, +* in sS = H’A,(l -A;/lO). (A21) 
this case read 

where 

dH 2yLe +* 
-= 
d5 3 H’ (v6*+8) 

d A, &SE3 
x=c4-H)el 

W* _ ~3 
d< H%, 

The boundary conditions at 5 = [+ are defined by the values 

(413) of H, Ao, 4* obtained by carrying out the integration of the 
differential equations through zone 1 to the point where Ar = 1. 
The values of 5 where A0 becomes equal to unity marks the 

(AI4) end of zone 2b. 

(AI5) 
Zone3:A,,A,~1,5>5,,r~ 

11 A 
E,=l+- 

[ 

B (1 -A$/lO) 

20 A+(y+*+p) Y+*+p + (1-3/lOA;) 1 2 
1; : ‘+;;;:~Jp)J_ H(y;~~;)AO 

i 11 Le/Gt +*E* 

In this zone both boundary layers are fully developed. Again, 
a distinction is to be made between the constant wall tem- 
perature and adiabatic wall conditions. 

Constant temperature wall. The equations prevailing are 
equations (46) (47b) and (48b). Equations (17) and (23) 
provide an expression for QW 

l-d*- ‘;+;;)I (A22) 

whereas (H, &, +*) are obtained by integrating the follow- 
ing equations : 

dH 2 YLe (9*-&) p= 
d5 3 H’ (y+*+B) 

(~23) 

4Le fl 62 
E4 = 7 (y~*+,B)A9(1-3/10A~) 

A,+(l-A;/lO) 

a5 = 4*(1-3jlOA;) (‘4’6) 

(~24) 

(A25) 

The boundary conditions for both the adiabatic and constant where 
wall temperature equations are defined by the values of 
(H, Am, 4*) obtained through the integration of equations E, = 16+ _ 7A r&+B 9 ~ 
(A3)-(A5), at the end of the first zone (at 5 = &J. The value (Y+*+B) (Y+*+B) + 11 1 
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Adiabatic wall. The equations in effect are equations (46), 
(47b) and (48~). Equations (17) and (23) yield 0, in terms 

of (4*, Gkv) 

(.427) 

whereas the resulting differential equations for (H, &, 4*) 
read 

dH 2 1?Le (4*-d%) 

d5 3 H3 (lid*+& 
(A28) 

d& _ 20 E> 9 Ei 

dir 11 H3 11 H%, (A29 

J(y) (, _A;/lO)” 

4* = -~-A14mPP 

1+ J(Le) 
(B6) 

AiFm(l -A;/lO)“’ 

A(,(1 -A;/lO) 

J(k) 
l+i\iB-(l-A;jlO)” 

(B7) 

(W 

where 

d4* ci 
(A30) Zone 2a 

Isothermal wail. 

+[+A#~ (B9) 

ii 410(L8f7*+7QW) 
I 

= 2;;: -Q, (BlO) 
9 

H*+p = 1 (B11) 

2A r#)* 
20*-Q%, = j- z,. 0312) 

(A31) No simple analytic expressions are obtained in this case and 
the inteeration is to be carried out numericallv. 

The boundary conditions used for integrating either equa- 
tions (A23)-(A25) or equations (A28)-(A30) are the values 
obtained for H, & and $* at the end of the second zone. 
The integration in the fully developed boundary layer region 
is carried on downstream until uniform concentration and 
temperature profiles are obtained across the film, as equi- 
librium is reached. 

AdiabYalic wall. 

$[$(A$- zj] = 2Le(O*-0:) (Bf3) 

(B14) 

APPENDIX 6. MODEL EQUATIONS FOR /I # 1, 
y+O,Ja<<l 

(Bl5) 

0316) 
In the limit of a low process driving force, y + 0, ~;c#J* +b + P A’$ 

/Y and by equation (46) H = 1. Under these conditions, the Equations (B13)-(Bl6) yield 
model equations (equations (47) and (48)) are significantly 
simplified and some analytic solutions may be derived in 
terms of a combined parameter A//I (instead of both A and fi in the general case). 4* = 1 -(j* 
Zone I 

$[Q;*A’(l-;;)]=~ (B1) 
(B17) 

;[“2’A,(l-$)]=2;:$ (B2) 

$;+&i(,_A;,,O)] 
o,= d 

l+g ;+$l-A;,lO) 
[ 1 

(B18) 

ti e*+c$*= 1 (B3) 

o* A p 
B_ A/B W-%/lo) 

-z (B4) 
2Le 

4) B A; 
For Le < 1, A$ < A,], equations (B 1)-(B4) are solved to yield (B19) 

A, = J(La)A,(l -A;/lO)‘:’ (B5) The variation of A,(t) is obtained through a numerical inte- 
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gration of equation (B13) with Am = ,/(9Le/lO) at 5 = r, 
(see equations (B5) and (B8) with An = 1). 

Zone 3 
Isothermal wall. 

(B20) 

0321) 

0322) 

(~23) 

Analytic integration carried out with the boundary condition 
& = 0, 4; = r#~*(t = <,& (as obtained from the solution for 
zone 2) yields 

where & = &< = &), and thus (l-&/(1-$,) < 1. For 
Le CC 1 the right-hand side of equation (B24) approaches 
zero, whereby 

+* = (1+2A//QJ/(1+2A/a) ; 0* = 1 - +* (B25) 

which yields 

Qw = WP( 1 - hJ/( I+ N/9 VW 

(B27) 

Integration of equation (B20) with $* by equation (B25) 
yields 

40Le 
- (11+4o*,8)(5-&J 1 W3) 

Adiabatic wall. 

1 = 2Le(+* -4,) (B29) 

1 = ?(9*-9,) 0330) 

o*++* = 1 (B31) 

(e* -0,) = 3 ($* - &). (~32) 

Equations (B29)-(B32) for Le CC 1 yield 

d* = [l -(ll/20)~AlB~e)~,ll~l+(9/20)(A/8Le)l; 

(j* = 1-p (B33) 

o 

w 

= o*_ \ 1 -4w-WPW& 
P 1 + (9/20) (A/B Le) 

(B34) 

9/2o+(l,/2o)~,+(,l/2o)(A~~)~, 

1+ (9/20)(AiB Le) 1 ; 

(B35) 

40 (Le + A/p) 

-ii~(~-~s) 
(B36) 

ABSORPTION NON ISOTHERME DE VAPEUR DANS UN FILM TOMBANT 

R&urn&L’etude concerne l’absorption de vapeur dans un film tombant pour lequel les concentrations 
d’absorbat et d’absorbant sont cornparables. Les mecanismes combines de transfert de chaleur et de masse 
sont analyses a travers une formulation integrale des equations de continuite, de diffusion et d’energie. On 
considtre des conditions de paroi adiabatique et isotherme. Les nombres de Nusselt et de Sherwood sont 
exprimes en fonction des parametres adimensionnels qui caracterisent le systeme. On montre que dans le 
cas de la dilution finie d’absorbdt. le terme convectif lateral a la surface libre doit etre pris en compte. Le 
transfert resultant depend a la fois du niveau de concentration d’absorbat et de la force motrice et il 
est significativement augment6 par rapport a ce qui est obtenu dans l’hypothese d’une dilution infinie 

d’absorbat. 

DIE NICHTISOTHERME ABSORPTION VON DAMPF IN EINEM RIESELFILM 

Zusammenfassung-Die vorliegende Untersuchung beschaftigt sich mit der Absorption von Dampf in 
einem Rieselfilm, und zwar fiir den Fall, daB sich die Konzentrationen in Dampf und Fliissigkeit wenig 
unterscheiden. Zur Analyse der gekoppelten Vorglnge des W&me- und Stofftransports wird eine 
Integralform der Kontinuitats-, der Diffusions- und der Energiegleichung betrachtet. Die Wand wird als 
adiabat bzw. isotherm angenommen. Die Nusselt- und die Sherwood-Zahl werden abhlngig von dimen- 
sionslosen Parametem ausgedriickt, welche das System beschreiben. Es zeigt sich, daB eine endliche 
Verdiinnung des zu absorbierenden Stoffes durch einen entsprechenden quergerichteten Konvektionsterm 
an der freien Oberflache beriicksichtigt werden sollte. Es zeigt sich weiterhin, dal3 die resultierenden Warme- 
und Stoffstriime sowohl von der Konzentration im zu absorbierenden Stoff abhangen als such von der 
treibenden Kraft ; sie sind wesentlich gr6Ber im Vergleich zu denjenigen, welche sich bei Annahme einer 

unendlich kleinen Verdiinnung ergeben. 
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HEMIJOTEPMZI~HOE IIOI-JlOJ.qEHtrE lTAPA CTEKAIOIUEti IUiEHKOm 

Aimomqmw-kkxne~yewx nornoqeme napa cTeKaso~efinneHKol npn conomarmMbIx KoHuempawisx 

a6cop6aTa w a6cop6eHTa. CoBrmmwse npow.m4 Temo- H MacconepeHoca aHami3sipyWTcn npE 

EOMOIUH ypaBHe&i p~p~BH~,~~~H~ N 3HepI'BH B HHTerpZJibHOk &pMe.PaC‘%aTpirBaWTCR 

ycnoa~n c ~a6aT~q~Ko~ N ~3oTepM~q~Ko~ cremahiu. %cfia HyCGnbTa a Eiepeyna 8brpaxeHm 

qe~~p~Mep~e~apa~e~~,xapaKT~H3~~ec~~e~.~oK~aHo,~o BcnygaeKoHeworopas- 

6aBneHHn a6COp6aTa CJleAyeT yWTbIBaTb C%WaCMOe, OIlACbIBalOlIW llOlle~'iHylo KOHBeKWIO y CBO- 

6omioii IIOBepXHOCTH. HakeHo, 'IT0 pe3yJlbTNpyKWHe CKOpOCTH 3aBHCIIT KBK OT KOHIleHTpiUliH 

a6cop6aTa,TaK A OT ABEilKyrUeSi CWbl U 3aMeTHO tI~BbIlfUVoT 3Ha'IeHIiK,llO~yYeHHble B II~lU'tOJIO~e- 


